Integral Calculus

§8.2 Series

1. What is an Infinite Series?

An infinite series is the sum of all the terms in a sequence:

a1+a2+a3+=n=1ana_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n

We make sense of this by looking at partial sums:

sn=a1+a2++ans_n = a_1 + a_2 + \dots + a_n
  • If snSs_n \to S (a finite number) as nn \to \infty, then the series converges and the sum is SS.
  • If not, the series diverges.

Takeaway: If the running total “settles down” to a number, the series converges.


2. The Basic "nth-Term" Test (for Divergence)

A quick test: if the terms don’t shrink to 0, then the series can’t converge.

If limnan0, the series diverges.\boxed{\text{If } \lim_{n \to \infty} a_n \neq 0, \text{ the series diverges.}}

Takeaway: If the terms don’t go to 0, the series must diverge — no exceptions.


3. Geometric Series

A geometric series looks like this:

a+ar+ar2+ar3+=n=1arn1a + ar + ar^2 + ar^3 + \dots = \sum_{n=1}^{\infty} ar^{n-1}

It converges only if r<1|r| < 1, and then:

n=1arn1=a1r\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1 - r}

Otherwise, it diverges.

Examples:

  • 12+14+18+\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dotsa=12,r=121/211/2=1a = \frac{1}{2}, r = \frac{1}{2} \Rightarrow \frac{1/2}{1 - 1/2} = 1

  • 0.23=0.23+0.0023+0.000023+0.\overline{23} = 0.23 + 0.0023 + 0.000023 + \dotsa=0.23,r=11000.2311100=2399a = 0.23, r = \frac{1}{100} \Rightarrow \frac{0.23}{1 - \frac{1}{100}} = \frac{23}{99}

Takeaway: If you see a constant ratio between terms, you can find the exact sum.


4. Algebra Rules for Series

If an\sum a_n and bn\sum b_n both converge, then:

  • (can)\sum (c \cdot a_n) converges
  • (an+bn)\sum (a_n + b_n) converges
  • (anbn)\sum (a_n - b_n) converges

Takeaway: You can scale or combine convergent series and still get convergence.


5. The Integral Test and p-Series

If an=f(n)a_n = f(n), and f(x)f(x) is positive, continuous, and decreasing, then:

n=1f(n) converges    1f(x)dx converges\sum_{n=1}^{\infty} f(n) \text{ converges} \iff \int_{1}^{\infty} f(x) \, dx \text{ converges}

Example: p-Series

n=11np\sum_{n=1}^{\infty} \frac{1}{n^p}
  • Converges if p>1p > 1
  • Diverges if p1p \leq 1

Takeaway: Integration can tell us whether a series adds up or not, especially when it's hard to use algebra.


6. Comparison Tests

Use these when your series looks complicated but resembles a simpler one.

A. Direct Comparison Test

If:

  • 0anbn0 \leq a_n \leq b_n
  • and bn\sum b_n converges → then an\sum a_n also converges

(If bn\sum b_n diverges and anbna_n \geq b_n, then an\sum a_n diverges too.)

B. Limit Comparison Test

If:

limnanbn=c where 0<c<\lim_{n \to \infty} \frac{a_n}{b_n} = c \text{ where } 0 < c < \infty

Then an\sum a_n and bn\sum b_n either both converge or both diverge.

Takeaway: If your series behaves “like” a known one at infinity, it’ll share the same fate.


7. Summary: Strategy for Any Series

When you see a new infinite series:

  1. nth-Term Test Does an0a_n \to 0?

    • If not → Diverges
  2. Geometric? p-Series?

    • Recognize these immediately
  3. Use the Integral Test

    • For positive, decreasing functions
  4. Comparison Tests

    • Compare with simpler series
  5. More advanced tools (next sections):

    • Ratio Test, Alternating Series Test, etc.

Final Thought: All tests are ways of asking: "Do the running totals approach a real number?"

Whether it’s comparing, integrating, or recognizing patterns, the goal is the same: convergence or divergence.

Back to Integral Calculus