Integral Calculus

§8.4 Other Convergence Tests

1. Why we need new tests

All the tests you learned earlier (Integral, Comparison, ‑p‑series, etc.) assume every term is positive. But many useful series zig‑zag above and below zero, for example

112+1314+1-\tfrac12+\tfrac13-\tfrac14+\dots

So we need tests that handle sign changes.


2. Alternating Series & the Alternating Series Test (AST)

Key ideaPlain‑English explanation
Alternating seriesTerms switch sign: an=(1)n1bna_n = (-1)^{n-1} b_n with bn>0b_n>0.
AST conditions1. The positive part bnb_n gets smaller: bn+1bnb_{n+1}\le b_n.
2. bnb_n shrinks to 0: limnbn=0\displaystyle\lim_{n\to\infty} b_n = 0.
ConclusionIf both hold, the series converges.

Why it works (picture) – partial sums bounce left‑right but the “zig‑zag” steps keep shrinking, so they squeeze toward a single number.

Example A (Alternating harmonic series)

n=1(1)n11n\sum_{n=1}^{\infty}(-1)^{n-1}\frac1n

bn=1nb_n=\tfrac1n is decreasing and →0, so it converges by AST.

Example B (Fails AST)

n=1(1)n13nn+7\sum_{n=1}^{\infty}(-1)^{n}\frac{1-3n}{n+7}

Limit of bnb_n is 3 ≠ 0, so AST cannot help; the series actually diverges by the basic “limit of a_n” test (often called Test for Divergence).


3. Absolute vs Conditional Convergence

TermMeaning
Absolute convergenceThe series made from (ana_n) converges.
Conditional convergenceThe original series converges but (ana_n) diverges.

Big fact: Absolute     \implies Convergent (proof uses Comparison Test with an|a_n|).

  • Alternating harmonic series is conditionally convergent – its absolute version is the divergent harmonic series.
  • n=1cosnn2\displaystyle\sum_{n=1}^{\infty}\frac{\cos n}{n^{2}} is absolutely convergent because cosn1|\cos n|\le1 and 1/n2\sum 1/n^{2} converges (‑p‑series with p>1p>1).

4. Ratio Test (great when factorials or exponentials appear)

Compute L=limnan+1anL=\displaystyle\lim_{n\to\infty}\Bigl|\frac{a_{n+1}}{a_n}\Bigr|.

ResultVerdict
L<1L<1Absolutely (hence totally) convergent
L>1L>1 or L=L=\inftyDivergent
L=1L=1No information – try another test

Example C 

n=1(1)nn22n\sum_{n=1}^{\infty}(-1)^n\frac{n^2}{2^n} an+1an=(n+1)22n+12nn212<1\left|\frac{a_{n+1}}{a_n}\right| =\frac{(n+1)^2}{2^{\,n+1}}\cdot\frac{2^{\,n}}{n^{2}} \to\frac12<1

Series converges absolutely. (Your handwritten page marks it “AC” ✔.)

Example D 

n=1nnn!\sum_{n=1}^{\infty}\frac{n^n}{n!} an+1ane>1\frac{a_{n+1}}{a_n}\to e>1

Series diverges. (Matches your slide with result “D” for divergent.)


5. Root Test (handy when the whole term is raised to the nn-th power)

Compute L=limnannL=\displaystyle\lim_{n\to\infty}\sqrt[n]{|a_n|}.

Same conclusions as the Ratio Test: L<1L<1     \implies converge, L>1L>1     \implies diverge, L=1L=1     \implies inconclusive.

Example E 

n=1(2n33n2)n\sum_{n=1}^{\infty}\Bigl(\frac{2n-3}{3n-2}\Bigr)^{n} ann  =  2n33n2    23<1\sqrt[n]{|a_n|}\;=\;\frac{2n-3}{3n-2}\;\longrightarrow\;\frac23<1

So the series converges.


6. Quick Strategy Cheat‑Sheet

Situation you noticeTest to try first
Terms alternate cleanly & bnb_n ↓ 0AST
Factorials, knk^n, or many productsRatio test
Something like (expression)n(\text{expression})^{n}Root test
Positive terms & resembles 1/np1/n^pComparison or p‑series
Integral of f(n)f(n) easyIntegral test
Signs irregular → check absolute value firstAbsolute/conditional approach

7. Practice – Try these quick checks

  1. n=1(1)n+1n(n+2)\displaystyle \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n(n+2)}
  2. n=1(2n)!4n(n!)2\displaystyle \sum_{n=1}^{\infty}\frac{(2n)!}{4^{\,n}(n!)^{2}}
  3. n=1sinnn3/2\displaystyle \sum_{n=1}^{\infty}\frac{\sin n}{n^{3/2}}

(Hint: 1 → AST then absolute test, 2 → Ratio, 3 → compare |sin n| to 1 and use p‑series.)


8. Key Take‑aways

  • Alternating signs + shrinking size     \implies convergence (AST).
  • Absolute convergence is stronger; if it happens, you’re done.
  • Ratio & Root tests are powerhouse tools whenever factorials or nth‑powers show up.
  • Always check the limit of ana_n first: if it isn’t zero, the series diverges instantly.

Keep this roadmap handy and series tests will feel a lot less mysterious!

Back to Integral Calculus