Mechanics

Chapter 4: Kinematics in Two Dimensions

1. Moving in Two Dimensions—The Big Picture

When an object can slide left–right and up–down at the same time, we call that two‑dimensional (2‑D) motion. Cars taking a curved exit, balls flying through the air, and electrons deflected inside a TV tube are all everyday examples. The secret to understanding any 2‑D motion is simple:

  1. Split it into two easier 1‑D motions—one along x (horizontal) and one along y (vertical).
  2. Solve each direction separately, then re‑combine your answers with the Pythagorean theorem or basic trigonometry.

2. Vectors: Your 2‑D "GPS"

IdeaHow we write itWhat the pieces mean
Positionr=xi^+yj^\vec{r} = x\hat{i} + y\hat{j}"Where am I?" along x and y.
DisplacementΔr=(Δx)i^+(Δy)j^\Delta\vec{r} = (\Delta x)\hat{i} + (\Delta y)\hat{j}"How far did I move?"
Velocityv=dxdti^+dydtj^=vxi^+vyj^\vec{v} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}How fast and in which direction you are moving right now.
Accelerationa=dvdt=axi^+ayj^\vec{a} = \frac{d\vec{v}}{dt} = a_x\hat{i} + a_y\hat{j}How fast your velocity itself is changing.
  • Magnitude (size) of any vector → use Pythagoras: v=vx2+vy2|\vec{v}| = \sqrt{v_x^2 + v_y^2}.
  • Direction (angle)tanθ=vyvx\tan\theta = \frac{v_y}{v_x}.
  • A component parallel to v\vec{v} changes your speed; a component perpendicular to v\vec{v} bends your path.

3. Constant‑Acceleration Motion & Projectiles

3.1 Treat x and y as two separate stories

For constant acceleration, the familiar 1‑D equations work in each direction:

x‑directiony‑direction
vfx=vix+axΔtv_{fx} = v_{ix} + a_x \Delta tvfy=viy+ayΔtv_{fy} = v_{iy} + a_y \Delta t
xf=xi+vixΔt+12axΔt2x_f = x_i + v_{ix}\Delta t + \frac{1}{2}a_x\Delta t^2yf=yi+viyΔt+12ayΔt2y_f = y_i + v_{iy}\Delta t + \frac{1}{2}a_y\Delta t^2
vfx2=vix2+2axΔxv_{fx}^2 = v_{ix}^2 + 2a_x\Delta xvfy2=viy2+2ayΔyv_{fy}^2 = v_{iy}^2 + 2a_y\Delta y

Once you know the final x‑ and y‑components, build the overall vector again:

vf=vfx2+vfy2|v_f| = \sqrt{v_{fx}^2 + v_{fy}^2}, θ=tan1(vfyvfx)\theta = \tan^{-1}\left(\frac{v_{fy}}{v_{fx}}\right).

3.2 Projectile Motion

A projectile is anything launched and then left to move only under gravity (so ax=0a_x = 0, ay=ga_y = -g). The trajectory is a parabola. Classic facts:

  • Time to reach top: tup=viygt_{up} = \frac{v_{iy}}{g}
  • Range on level ground: R=vi2sin(2θ)gR = \frac{v_i^2\sin(2\theta)}{g}
  • The two halves of the flight are mirror images in time.

Quick check: If you fire a ball horizontally from a table while dropping another ball from the same height at the same moment, do they land at the same time?

Both hit the floor together, because gravity acts the same on both.

Click to reveal

4. Circular Motion—Going Around the Bend

4.1 Two pieces of acceleration

For any curved path, especially a circle, it helps to split acceleration into:

NameSymbolPointsJob
Radial (centripetal)ara_rtoward the centerChanges direction of v\vec{v}
Tangentialata_talong the tangentChanges speed

Total acceleration: a=ar2+at2a = \sqrt{a_r^2 + a_t^2}.

4.2 Uniform Circular Motion (UCM)

If speed is constant (at=0a_t = 0):

  • Period T: time for one lap. v=2πrTv = \frac{2\pi r}{T}.
  • Angular speed ω\omega: how fast the angle changes (rad/s). ω=2πT\omega = \frac{2\pi}{T}.
  • Relationship v=rωv = r\omega.
  • Radial acceleration only: ar=v2r=rω2a_r = \frac{v^2}{r} = r\omega^2.

Concept check: Three dots drawn at different radii on a spinning disk all share the same angular velocity (ω\omega). Which statement is true about their linear velocities (vv) and radial accelerations (ara_r)?

The dots all share the same ω\omega (they sweep the same angle in the same time) but the one farthest out has the largest vv and ara_r.

Click to reveal

5. Rotational (Angular) Kinematics—Thinking in Radians

Linear ideaAngular cousinSymbol & units
Position xAngular position θ\thetaradians (rad)
Velocity vAngular velocity ω\omegarad/s
Acceleration aAngular acceleration α\alpharad/s²
  • Counter‑clockwise = positive; clockwise = negative.
  • If ω\omega and α\alpha share the same sign → the rotation speeds up; opposite signs → it slows down.

For constant α\alpha, the equations perfectly mirror the linear set:

ωf=ωi+αΔtθf=θi+ωiΔt+12αΔt2ωf2=ωi2+2αΔθθf=θi+12(ωi+ωf)Δt\begin{align} \omega_f &= \omega_i + \alpha \Delta t \\ \theta_f &= \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2 \\ \omega_f^2 &= \omega_i^2 + 2\alpha \Delta\theta \\ \theta_f &= \theta_i + \frac{1}{2}(\omega_i + \omega_f)\Delta t \end{align}

Connect linear and angular worlds on a radius r:

  • ar=rω2a_r = r\omega^2
  • at=rαa_t = r\alpha.

6. Key Take‑Aways

  • Decompose → solve → recombine is the golden rule.
  • Constant‑acceleration projectiles trace parabolas; treat x and y independently.
  • In circular motion, remember the direction of ara_r (center‑seeking) and that ata_t controls speed changes.
  • Angular quantities mirror linear ones—keep track of signs!

7. Worked Examples

Problem 1: Drone Position with Constant Acceleration

A drone has an initial position ri=(30i^+40j^10k^)\vec{r}_i = (30\hat{i} + 40\hat{j} - 10\hat{k}) m and an initial velocity vi=(1i^+1j^)\vec{v}_i = (-1\hat{i} + 1\hat{j}) m/s. The operator instructs the drone to move with an acceleration a=(0.25i^+0.33k^)\vec{a} = (0.25\hat{i} + 0.33\hat{k}) m/s² for 5 s. What is the final position of the drone?

Solution: We need to analyze this motion in each dimension separately using the constant acceleration equations.

x-direction:

  • Initial position: xi=30x_i = 30 m
  • Initial velocity: vxi=1v_{xi} = -1 m/s
  • Acceleration: ax=0.25a_x = 0.25 m/s²
  • Time interval: Δt=5\Delta t = 5 s

Final position in x: xf=xi+vxiΔt+12axΔt2x_f = x_i + v_{xi}\Delta t + \frac{1}{2}a_x\Delta t^2 xf=30+(1)(5)+12(0.25)(5)2x_f = 30 + (-1)(5) + \frac{1}{2}(0.25)(5)^2 xf=305+12(0.25)(25)x_f = 30 - 5 + \frac{1}{2}(0.25)(25) xf=305+3.125x_f = 30 - 5 + 3.125 xf=28.125x_f = 28.125 m

y-direction:

  • Initial position: yi=40y_i = 40 m
  • Initial velocity: vyi=1v_{yi} = 1 m/s
  • Acceleration: ay=0a_y = 0 m/s² (no acceleration in y-direction)
  • Time interval: Δt=5\Delta t = 5 s

Final position in y: yf=yi+vyiΔt+12ayΔt2y_f = y_i + v_{yi}\Delta t + \frac{1}{2}a_y\Delta t^2 yf=40+(1)(5)+12(0)(5)2y_f = 40 + (1)(5) + \frac{1}{2}(0)(5)^2 yf=40+5+0y_f = 40 + 5 + 0 yf=45y_f = 45 m

z-direction:

  • Initial position: zi=10z_i = -10 m
  • Initial velocity: vzi=0v_{zi} = 0 m/s (not specified, so assumed zero)
  • Acceleration: az=0.33a_z = 0.33 m/s²
  • Time interval: Δt=5\Delta t = 5 s

Final position in z: zf=zi+vziΔt+12azΔt2z_f = z_i + v_{zi}\Delta t + \frac{1}{2}a_z\Delta t^2 zf=10+(0)(5)+12(0.33)(5)2z_f = -10 + (0)(5) + \frac{1}{2}(0.33)(5)^2 zf=10+0+12(0.33)(25)z_f = -10 + 0 + \frac{1}{2}(0.33)(25) zf=10+4.125z_f = -10 + 4.125 zf=5.875z_f = -5.875 m

Therefore, the final position vector is: rf=(28.125i^+45j^5.875k^)\vec{r}_f = (28.125\hat{i} + 45\hat{j} - 5.875\hat{k}) m

Click to reveal

Problem 2: Electron Motion Between Charged Plates

An electron initially moving horizontally at 3.3 × 10⁷ m/s travels between two charged plates that are 2.0 cm long. Between the plates, the electron experiences an upward acceleration of 2.9 × 10¹⁶ m/s². What is the final velocity of the electron when it exits on the other side?

Solution: We need to determine how the electron's velocity changes as it passes through the electric field between the plates.

Step 1: Determine the time the electron spends between the plates. Using the horizontal motion (x-direction):

  • Initial horizontal position: xi=0x_i = 0 m (reference point)
  • Final horizontal position: xf=0.02x_f = 0.02 m (2.0 cm)
  • Initial horizontal velocity: vxi=3.3×107v_{xi} = 3.3 \times 10^7 m/s
  • Horizontal acceleration: ax=0a_x = 0 m/s² (no horizontal acceleration)

From the constant velocity equation: xf=xi+vxiΔtx_f = x_i + v_{xi} \Delta t 0.02=0+(3.3×107)Δt0.02 = 0 + (3.3 \times 10^7) \Delta t Δt=0.023.3×107=6.06×1010\Delta t = \frac{0.02}{3.3 \times 10^7} = 6.06 \times 10^{-10} s

Step 2: Calculate the vertical velocity component.

  • Initial vertical velocity: vyi=0v_{yi} = 0 m/s (starts horizontally)
  • Vertical acceleration: ay=2.9×1016a_y = 2.9 \times 10^{16} m/s²
  • Time interval: Δt=6.06×1010\Delta t = 6.06 \times 10^{-10} s

Final vertical velocity: vyf=vyi+ayΔtv_{yf} = v_{yi} + a_y \Delta t vyf=0+(2.9×1016)(6.06×1010)v_{yf} = 0 + (2.9 \times 10^{16})(6.06 \times 10^{-10}) vyf=1.76×107v_{yf} = 1.76 \times 10^7 m/s

Step 3: Calculate the magnitude and direction of the final velocity. The final horizontal velocity component is unchanged: vxf=vxi=3.3×107v_{xf} = v_{xi} = 3.3 \times 10^7 m/s

Magnitude of the final velocity: vf=vxf2+vyf2|v_f| = \sqrt{v_{xf}^2 + v_{yf}^2} vf=(3.3×107)2+(1.76×107)2|v_f| = \sqrt{(3.3 \times 10^7)^2 + (1.76 \times 10^7)^2} vf=(10.89×1014)+(3.10×1014)|v_f| = \sqrt{(10.89 \times 10^{14}) + (3.10 \times 10^{14})} vf=13.99×1014|v_f| = \sqrt{13.99 \times 10^{14}} vf=3.74×107|v_f| = 3.74 \times 10^7 m/s

Direction angle: θ=tan1(vyfvxf)\theta = \tan^{-1}\left(\frac{v_{yf}}{v_{xf}}\right) θ=tan1(1.76×1073.3×107)\theta = \tan^{-1}\left(\frac{1.76 \times 10^7}{3.3 \times 10^7}\right) θ=tan1(0.533)\theta = \tan^{-1}(0.533) θ=28.1°\theta = 28.1°

Therefore, the final velocity of the electron is 3.7×1073.7 \times 10^7 m/s at an angle of 28°28° above the horizontal.

Click to reveal

Problem 3: Grinding Wheel Angular Motion

At t = 0 a grinding wheel has an initial angular velocity of 229 rpm. It experiences a constant angular acceleration of 30.0 rad/s² for 2.00 s. The wheel is then unplugged and it rotates 432 rad as it comes to a stop with a constant angular acceleration. (a) What total angle does the wheel turn before being unplugged? (b) How much time does it take the wheel to stop after being unplugged? (c) What is the angular acceleration as the wheel slows down?

Solution: We need to analyze this problem in two phases: the speeding up phase (when the wheel accelerates) and the slowing down phase (after being unplugged).

Step 1: Convert the initial angular velocity from rpm to rad/s. ωi=229 rpm×2π rad1 rev×1 min60 s=23.98 rad/s\omega_i = 229 \text{ rpm} \times \frac{2\pi \text{ rad}}{1 \text{ rev}} \times \frac{1 \text{ min}}{60 \text{ s}} = 23.98 \text{ rad/s}

Part (a): Calculate the angle turned before being unplugged.

  • Initial angular position: θi=0\theta_i = 0 rad
  • Initial angular velocity: ωi=23.98\omega_i = 23.98 rad/s
  • Angular acceleration: α=30.0\alpha = 30.0 rad/s²
  • Time interval: Δt=2.00\Delta t = 2.00 s

Using the angular position equation: θf=θi+ωiΔt+12αΔt2\theta_f = \theta_i + \omega_i\Delta t + \frac{1}{2}\alpha\Delta t^2 θf=0+(23.98 rad/s)(2.00 s)+12(30.0 rad/s2)(2.00 s)2\theta_f = 0 + (23.98 \text{ rad/s})(2.00 \text{ s}) + \frac{1}{2}(30.0 \text{ rad/s}^2)(2.00 \text{ s})^2 θf=47.96 rad+60.0 rad\theta_f = 47.96 \text{ rad} + 60.0 \text{ rad} θf=107.96 rad\theta_f = 107.96 \text{ rad}

The final angular velocity after the first 2.00 seconds: ωf=ωi+αΔt\omega_f = \omega_i + \alpha\Delta t ωf=23.98 rad/s+(30.0 rad/s2)(2.00 s)\omega_f = 23.98 \text{ rad/s} + (30.0 \text{ rad/s}^2)(2.00 \text{ s}) ωf=23.98 rad/s+60.0 rad/s\omega_f = 23.98 \text{ rad/s} + 60.0 \text{ rad/s} ωf=83.98 rad/s\omega_f = 83.98 \text{ rad/s}

Part (b): Calculate the time to stop after being unplugged.

  • Initial angular position for slowing phase: θi=107.96\theta_i = 107.96 rad
  • Final angular position: θf=107.96 rad+432 rad=539.96\theta_f = 107.96 \text{ rad} + 432 \text{ rad} = 539.96 rad
  • Initial angular velocity: ωi=83.98\omega_i = 83.98 rad/s
  • Final angular velocity: ωf=0\omega_f = 0 rad/s (wheel stops)

Since we know the initial and final velocities and the angular displacement, we can use: θf=θi+12(ωi+ωf)Δt\theta_f = \theta_i + \frac{1}{2}(\omega_i + \omega_f)\Delta t

Rearranging to solve for Δt\Delta t: Δt=2(θfθi)ωi+ωf\Delta t = \frac{2(\theta_f - \theta_i)}{\omega_i + \omega_f} Δt=2(539.96 rad107.96 rad)83.98 rad/s+0 rad/s\Delta t = \frac{2(539.96 \text{ rad} - 107.96 \text{ rad})}{83.98 \text{ rad/s} + 0 \text{ rad/s}} Δt=2(432 rad)83.98 rad/s\Delta t = \frac{2(432 \text{ rad})}{83.98 \text{ rad/s}} Δt=864 rad83.98 rad/s\Delta t = \frac{864 \text{ rad}}{83.98 \text{ rad/s}} Δt=10.29 s\Delta t = 10.29 \text{ s}

Part (c): Calculate the angular acceleration during slowing down.

  • Initial angular velocity: ωi=83.98\omega_i = 83.98 rad/s
  • Final angular velocity: ωf=0\omega_f = 0 rad/s
  • Time interval: Δt=10.29\Delta t = 10.29 s

Using the angular velocity equation: ωf=ωi+αΔt\omega_f = \omega_i + \alpha\Delta t 0=83.98 rad/s+α(10.29 s)0 = 83.98 \text{ rad/s} + \alpha(10.29 \text{ s}) α=83.98 rad/s10.29 s\alpha = \frac{-83.98 \text{ rad/s}}{10.29 \text{ s}} α=8.16 rad/s2\alpha = -8.16 \text{ rad/s}^2

The negative sign indicates that the angular acceleration is in the opposite direction of the angular velocity, causing the wheel to slow down.

Click to reveal
Back to Mechanics